
Tuning Neural network hyperparameters through Bayesian optimization and
Application to cosmetic formulation data

Mathilde Guillemot1 Catherine Heusèle1 Rodolphe Korichi1

Syvianne Schnebert1 Maxime Petit2 Liming Chen2

1 LVMH Recherche - Parfums et Cosmétiques
2 LIRIS UMR 5205 CNRS - Ecole centrale de Lyon

mguillemot@research.lvmh-pc.com

Abstract
A major issue in machine learning is to select the best hy-
perparameters of a predictive model without over-fitting.
In this paper, we propose to study through a principled
way the hyperparameter optimization in a neural network
designed for a classification problem on cosmetic formula-
tion data. Specifically, we propose to make use of Bayesian
optimization (BO) to automatically choose the next hyper-
parameter set to try based on previous observations and
a surrogate function of the model. This BO-based hyper-
parameter selection method is compared to the popular
grid search method. A 2-hidden-layer fully-connected neu-
ral network is trained on cosmetic formulation data. Ex-
tensive experiments show that hyperparameters found with
Bayesian optimization outperform the grid search hyperpa-
rameter set. Moreover, Bayesian optimization only needs
80 evaluations while 140 are used for the grid search.

Keywords
Hyperparameters optimization; Bayesian optimization;
cosmetic formulation data; neural network

1 Introduction
Neural networks are the gold standard for machine lear-
ning and big data problems. One advantage of those mo-
dels is their high flexibility and capacity to fit almost e-
very data. The major drawback is the difficulty to find the
good architecture and to tune hyperparameters. Determi-
ning those parameters is a major concern to reach the best
possible results. Classical techniques using grid search or
random search need many different experiments and are
time-consuming. Using Bayesian optimization is a solu-
tion widely used in recent years to help to find good hy-
perparameters while using as less calculation as possible.
Unlike grid search, it uses former calculations to find the
next hyperparameter set to evaluate. In case where data are
known not to be qualitative, it is difficult to know if the
mixed results are due to the low data quality or the model
fine tuning. The issue is to calibrate the time to spend on

the model.
This is the case we are studying while dealing with some
cosmetic formulation data. Cosmetic products are formu-
lated to provide care such as moisturizing, anti-aging or
anti-oxidant effect to the skin. A good cosmetic product
must not only be efficient but also have a good sensoriality,
a nice perfume, a good consistency, should be stable and
reproducible. Behind all those properties, scientific proce-
dures are set to measure quantitative efficiency. Therefore,
cosmetic formulation is a complex task and involves many
ingredients. Effects are measured on volunteers’ skin, a
complex and dynamic biological system, introducing un-
certainty in the data set. The aim of the model is to predict
short term moisturizing effect of a skincare product based
on its chemical formulation. The main contribution of this
work is the application of Bayesian optimization (BO) to
tune the hyperparameters of a neural network designed to
deal with cosmetic formulation data. Through extensive
experiments, we have shown the interest and superiority of
using BO for a principled hyperparameter tuning in com-
parison with the popular grid based search.
In this work, the performances achieved by a neural net-
work tuned with Bayesian optimization on the data set are
compared with the one delivered by the same neural net-
work tuned with a classical grid approach.
The paper is organized as follows. Section 2 is a state of
the art on the related work. Section 3 states the problem.
Section 4 details the proposed method. Section 5 analyzes
the experimental results. Section 6 concludes the paper.

2 State of the art
Bayesian optimization has been widely used for few
years. Tutorials have been written for instance for pro-
ving the importance of the Gaussian process choice du-
ring optimization[7], and explaining theoretical basis of
Bayesian optimization[2], [5], [6]. In literature, articles
also give practical examples where Bayesian optimization
outperforms other techniques. In [7] Bayesian optimiza-
tion is compared to grid search to tune hyperparameters
of LDA (Latent Dirichlet allocation) applied to a collec-

tion of Wikipedia articles. It has been found that BO finds
the best parameters in significantly less time. BO was also
used to find the hyperparameters of latent structured SVMs
for a problem of binary classification of protein DNA se-
quences. BO proved to be much better than grid search.
The last model studied in this paper is a neural network
on CIFAR-10 where Bayesian optimization also surpasses
human expert level tuning.
Further results are reported in paper [1] where tree Parzen
estimator is analyzed against random search for LFW and
pubFid data sets. The same algorithm is used on the
CIFAR-10 data set where Bayesian optimization finds al-
most the same parameters as a human expert.

3 Problem Statement
In our applicative context, we aim to build a model able
to predict the effect of a cosmetic product on skin from
the formulation. In this work a formulation means a list
of chemical ingredients with the associated concentrations.
The moisturizing effect is measured with a device named
corneometer which measures the skin capacitance. Final
result, expressed in percentage, translates a difference com-
puted before and after application of the product on the
arms of a volunteer panel. Capacitance is directly linked
with the moisturizing level of the skin. Data were collected
anonymously.
Based on raw data, predicted effects are then filed in three
classes (see Table 1).

Class Raw data Interpretation
0 data<23% No moisturizing power or de-

hydrating formulas
1 23%<data<54% Low moisturizing power
2 54%<data Good moisturizing power

Table 1 – Class description for moisturizing effect

Data set is composed of 4015 formulas described by 2039
features. Data set is imbalanced (see Table 2).

Train set Test set
Class 0 1329 Class 0 373
Class 1 1260 Class 1 522
Class 2 391 Class 2 140

Table 2 – Class description for moisturizing effect

To split the data set in test and training sets, the Kennar-
Stone algorithm is used. It allows to select samples with
a uniform distribution over the predictor space. Stratified
k-fold is also used to build the cross-validation folds inside
the training set. Each cross-validation fold should have the
same distribution as the whole training set.
A 5-fold cross validation is exploited to pick the best hy-
perparameter set either on grid search or Bayesian opti-
mization. Another set is kept to test the efficiency of the
hyperparameter set.

In both cases, a 2-hidden-layer neural network is studied.
A batch normalization is used before every hidden layer
and reLu function is used as neuron activation function.
We choose to set some parameters as:

• the mini batch size of train and test phase is set to 75

• the dropout rate is maintained to 0.5

• a learning rate schedule is also programmed dividing
learning rate by 10 every 30 epochs

The same cost function adapted to an ordinal-regression
problem is employed, it is based on the Cohen’s Kappa co-
efficient [3]. Adam optimization is used to update weights
and biases after each iteration. The weights are initialized
with the He et al weight initialization[4]. The learning rate
η is a hyperparameter that must be tuned. The dataset with
which we are working is imbalanced. All minibatches are
artificially balanced adding samples until the class are ba-
lanced.
L1-regularization is used for sparsity andL2-regularization
to avoid infinite weights, so the loss function is written as
equation 1.

loss = lossCohen′s Kappa + λ1‖w‖+ λ2‖w‖2 (1)

The above loss function thus introduces two other hyperpa-
rameters (see Table 3), namely the parameter for the lasso
regularization λ1 and the parameter for the ridge regular-
ization λ2.

Hyperparameter
symbol

Hyperparameter name

η Learning rate
λ1 Lasso regularization parameter
λ2 Ridge regularization parameter

Table 3 – Hyperparameters to tune

4 The method
In this section, a first part explains in detail the practical
Bayesian optimization method used in this paper to opti-
mize neural network hyperparameters. A second part takes
in account on a generalization of Area Under ROC Curve
(AUC) for multiclass problems.

4.1 Bayesian optimization
The idea behind Bayesian optimization is to build a pro-
babilistic model of an objective function and use it to se-
lect the most promising hyperparameters to evaluate a real
objective function.
When the goal is to find the best hyperparameters for
a neural network automatically, the objective function is
a performance indicator such as accuracy or AUC. Let
be X the space of possible hyperparameters, the objec-
tive function is marked f. We want to find x∗ such as
x∗ = argmaxx∈X f(x).

2

The objective function is a black box, its expression is un-
known, it cannot be analyzed, and its derivatives are un-
known either. In addition to find extrema of a complex
function, BO does it using the less function evaluation as
possible.
Let xi be the ith hyperparameter set and f(xi) the eval-
uation of the objective function at this point. Data
are aggregated as : D(1:t) = {(x(1:t), f(x(1:t))} =
{x1, x2, . . . , xt), (f(x1), f(x2), . . . , f(xt))}. BO is an it-
erative process, from known observations D(1:t) it decides
which point, hyperparameter set, xt+1 to try next.

Bayes’ theorem. The principle of BO belongs on Bayes’
theorem, three probabilities must be introduced:

• The posterior probability of a model knowing the ev-
idence : P (M | E)

• The likelihood of evidence E knowing model M :
P (E |M)

• Prior probability of M : P (M)

Bayes’ theorem indicates that the posterior probability is
proportional to the likelihood times the prior probability.

P (M | E) ∝ P (M | E) ∗ P (M) (2)

Transposing equation 2 to our case, Bayes’ theorem is writ-
ten :

P (f | D1:t) ∝ P (D1:t | f) ∗ P (f) (3)

It uses the evidence already computed and the prior know-
ledge to maximize the posterior probability on each point
of X. The posterior captures the update knowledge about
the unknown function. Gaussian processes are common
functions to surrogate f.

Gaussian process. The goal is to find an expression of
P (ft+1 | D1:t, xt+1). With this expression it is then possi-
ble to get the next hyperparameter set xt+1 that should be
evaluated.
The same way a Gaussian distribution is completely des-
cribed by its mean and variance, a Gaussian process is com-
pletely described by a mean function m and a covariance
function k.

f(x) ∼ GP (m(x), k(x, x′)) (4)

Gaussian process returns the mean and variance of a nor-
mal distribution over the possible values of f on x.
According to [2], if mean is set to 0, the posterior distribu-
tion can be written as 5

P (ft+1 | D1:t, xt+1) = N (µt(xt+1), σ2
t (xt+1)) (5)

where :
µt(xt+1) = kTK−1f1:t

σ2
t (xt+1) = k(xt+1, xt+1)− kTK−1k

and

k =
[
k(xt+1, x1) k(xt+1, x2) ... k(xt+1, xt)

]

K =

k(x1, x1) . . . k(x1, xt)
...

. . .
...

k(xt, x1) . . . k(xt, xt)


The covariance function is a kernel controlling the smooth-
ness and amplitude of the Gaussian process samples. The
mean provides a possible offset, in practice the mean is
kept constant: µ0(x) = µ0.
The interesting part is the choice of the covariance func-
tion. If two points (two hyperparameter sets) are close,
they must have a high influence on each other whereas if
they are far away, the influence of a point on the other is
barely nonexistent. Widely used kernel are Matérn’s ones,
they are parametrized by a smoothness parameter ς > 0
(see equation 6).

k(xi, xj) =
1

2ς−1Γ(ς)
(2
√
ς‖xi − xj)‖ςHς(2

√
ς‖xi − xj‖)

(6)
With Γ the gamma function and Hς the Bessel function of
order ς . It is convenient to use ς = p + 1

2 with p a natural
number. In that particular case, the covariance function
is the product of an exponential and a p-order polynomial.
For its application to machine learning, the most interesting
ς are ς = 3

2 or ς = 5
2 [6].

Acquisition function. Once P (f | D1:t) is estimated,
an acquisition function is used to find the point (a hyper-
parameter set) where f is supposed to be maximal. This
decision always relies on a trade-off between exploration
(sets where acquisition function is not known at all) and ex-
ploitation (values where acquisition function should have
high value). During exploration, points with high variance
are evaluated, during exploitation those points have high
mean.
Classically, three acquisition functions are used: probabi-
lity of improvement, expected improvement or GP Upper
Confidence Bound (GP-UCB). We choose to work with ex-
pected improvement which behaves better that probability
of improvement and does not require hyperparameter tun-
ing as it is the case with GB-UCB [7].
Intuitively, the expected improvement is the non-negative
improvement expected from the previous best observed
value.
Writing x+ = argmaxxn

f(xn), expected improvement
can be analytically evaluated as shown in equation 7

EI(x) =


(µ(x)− f(x+))Φ(µ(x)−f(x

+)
σ(x))

+σ(x)φ(µ(x)−f(x
+)

σ(x)), if σ(x) > 0.

0, if σ(x) = 0.

(7)

where φ is the normal distribution probability density func-
tion and Φ its cumulative density function.

3

Summary and example. Bayesian optimization works,
building a posterior function distribution, using Gaussian
processes and evidences, permitting to describe the func-
tion we are trying to optimize. When the number of evi-
dence grows, the posterior distribution is more precise, and
the algorithm is more certain of hyperparameter region it
should exploit. In Fig. 1 there is an example of Bayesian
optimization search for maxima for a one-dimension func-
tion.
The Bayesian algorithm is described in algorithm 1.

for t=1,2,... do
select new t+1 by optimizing acquisition function EI;

xt+1 = argmaxx EI(x;D1:t)

;
Find the objective value data at xt+1;
Augment data D1:t+1 = {D1:t, (xt+1, f(xt+1)};
Update statistical model;

end
Algorithme 1 : Bayesian optimization algorithm

An example of the first steps of a BO algorithm applied to
a function with one variable are shown in figure 1.
There are some drawbacks using Bayesian optimization:

• Finding the hyperparameters and specifically the ker-
nel of the gaussian process as a surrogate function for
prior distribution is a major concern. There are many
different kernels more or less complex possible

• This method can turn out to be very long when work-
ing with many parameters

• The choice of surrogate function might be critical,
gaussian processes are not always the best solution
[2].

• It is unclear how to handle trade-off between explo-
ration and exploitation in the acquisition function.
Too much exploration leads to many iterations with-
out seeing any improvement, while with extreme ex-
ploitation, we might fall into a local extremum [2].

4.2 AUC for multiclass
A function must be chosen to be the objective function opti-
mized by the Bayesian optimization procedure. A classical
choice is the global accuracy of the model. In our cosmetic
formulation data set, classes are highly imbalanced, see Ta-
ble 2, particularly formulas with very very high moisturi-
zing power are underrepresented. This is the reason why
we choose to study AUC as objective function of BO.
AUC is a measure designed for binary problems. It com-
putes the area under ROC curve representing true positive
rate as a function of false positive rate. AUC can be adapted
for a multiclass classification problem, using a one-versus-
all strategy. It will produce one curve for each class and so

one measure for each class. In order to plot those curves,
for all class c, the number of true positives (TPc), false
positives (FPc), false negatives (FNc) and false negatives
(FNc) must be known.
Besides a AUC value for each class, we need to compute
a global AUC measure able to provide information on the
whole model. There are two ways to compute a mean of
those AUC per class and then obtain a performance mea-
sure for the model:

• A macro-average (8) computes the metric indepen-
dently for each class and then take the average. It
treated all classes equally.

• On the contrary micro-average aggregates the contri-
butions of all classes to compute the average metric
(9).

When classes are imbalanced, micro-average is preferably
used.

AUCmacro =
1

C

C−1∑
c=0

AUC(TPc, FPc, TNc, FNc). (8)

AUCmicro = AUC(

C−1∑
c=0

TPc,

C−1∑
c=0

FPc,

C−1∑
c=0

TNc,

C−1∑
c=0

FNc).

(9)

5 Experiments
In this work, performances of two hyperparameter sets on
the cosmetic formulation dataset are compared. One set is
found using a grid search, the other using Bayesian opti-
mization. For each method, the evaluation criterion cho-
sen is AUC, which is expected to be as high as possible.
For both hyperparameters search, trials are limited to 100
attempts, because evaluations are time consuming. Conse-
quently, grid search is restricted to three hyperparameters
while, this number can be increased working with Bayesian
optimization. A fourth hyperparameter is tuned with the
Bayesian optimization procedure.

5.1 Grid search
For this procedure, the number of neurons is set to
100 for each hidden layer. There are three hyper-
parameters to set (learning rate η, lasso regulariza-
tion parameter λ1 and ridge regularization parameter
λ2). Those parameters can only take some value
previously defined : η ∈ [10−1, 10−2, 10−3, 10−4],
λ1 ∈ [10−1, 10−3, 10−5, 10−7, 10−9] and λ2 ∈
[10−1, 10−3, 10−5, 10−7, 10−9].
All possible combinations are tried, analyzing which
ranges give higher AUC, another run is set up to obtain
more precise results. At the end, only the combination gi-
ving best performances is kept. This mean that 100 runs are
needed just for the first phase. Based on the results of the

4

(a) Bayesian Optimization - Step 4 (b) Bayesian Optimization - Step 5 (c) Bayesian Optimization - Step 6

(d) Bayesian Optimization - Step 7 (e) Bayesian Optimization - Step 8 (f) Bayesian Optimization - Step 9

Figure 1 – Evolution of Bayesian optimization over 6 steps. Every figure present two graphs, on the first: blue line is the
target function, black dotted line the mean prediction function, surround blue area is the 95% confidence interval and red
points the evaluated observation. The second graph represent the variation acquisition function along each value

first phase, results are refined. This leads to another 40 runs
trying values with η ∈ [10−1, 5.10−2, 10−3, 10−2, 10−3],
λ1 ∈ [10−2, 5.10−3, 10−3, 510−4, 10−4] and λ2 ∈
[5.10−2, 5.10−4]. Best results are achieved for η = 10−2,
λ1 = 5.10−3 and λ2 = 5.10−4. For this hyperparameter
set, results are showed on figure 2 and the confusion matrix
is given in table 4
It is a choice to stop the grid search here, it would be pos-
sible to go deeper and continue refining parameters. More-
over, some other parameters can vary such as the number
of neuron for instance. The cost of grid search increases
exponentially as hyperparameters are added, therefore, this
technique can only be used is there are a few parameters in
the set to optimize.

Predicted Class
Class 0 Class 1 Class 2

Ground truth
Class 0 256 110 7
Class 1 107 353 62
Class 2 3 47 90

Table 4 – Matrix confusion obtained with grid-search hy-
perparameter set

The final AUC reaches 0.817.

5.2 Bayesian optimization
For Bayesian optimization, objective function is chosen to
be AUC. A Gaussian process with 5/2 Matérn kernel is

used as surrogate function for prior knowledge over func-
tions. The acquisition function chosen is the expected im-
provement.
Package BayesianOptimization al-
ready implemented for pytorch is used
(https://github.com/fmfn/BayesianOptimization). Be-
fore starting Bayesian optimization, 20 hyperparameter
sets are studied. During the procedure, 60 more are
evaluated.
For Bayesian optimization, there are four hyperparameters
to determine. As for grid search, learning rate and regu-
larization parameters must be tuned, the number of neu-
rons (the same in each layer) is added to this list. Those
parameters do not have to take specific value, they must
be in intervals, η ∈ [10−5 10−1], λ1 ∈ [10−15 10−1],
λ2 ∈ [10−15 10−1] and nbneurons ∈ [25 1000]
Hyperparameters are uncorrelated and independent. Loga-
rithmic scale is used for η, λ1 and λ2 parameters.
Best results are achieved for η = 10−2.41, λ1 = 10−2.03,
λ2 = 10−9.41, nbneurones = 229. The evolution of cost,
and AUC is shown on figure 3. Table 5 depicts the confu-
sion matrix of this model.
With this second model, AUC reaches 0.856.

5.3 Interpretation
Comparing the models studied, the most different hyper-
parameters are the number of neurons and the value of λ2.
Cost curves and AUC curves (Fig. 2 and Fig. 3) for both
grid search and Bayesian optimization models, are similar.

5

(a) Evolution of the cost function (b) Evolution of the AUC criterion

Figure 2 – Graph a) and b) respectively represent the evolution of the cost function and AUC as a function of the number of
epoch for the network tuned with grid search. Red line are results on training set, green line on testing set

(a) Evolution of the cost function (b) Evolution of the AUC criterion

Figure 3 – Graph a) and b) respectively represents the evolution of the cost function and AUC as a function of the number of
epoch for the network tuned with Bayesian optimization. Red line shows the results on training set, green line on testing set

Predicted Class
Class 0 Class 1 Class 2

Ground truth
Class 0 249 120 4
Class 1 79 404 39
Class 2 1 44 95

Table 5 – Matrix confusion obtained with BO hyperparam-
eter set

Curves evolve as they supposed to: cost function decreases
as the number of epoch increases, on the contrary AUC in-
creases reaching an asymptote after some iterations. The
value of this asymptote differs in both model and is higher
for the Bayesian optimization method. Despite using re-
gularization terms and dropout, both suffer from overfit-
ting on the train set. In each case, AUC on train set reaches
0.92-0.93 while values for test set are around 0.85. Con-
sidering the confusion tables, Table 4 and Table 5, we can
notice that there are few mistakes made between class 0
and 2 for both model. This is the result expected using
a loss function adapted to ordinal regression problem. The
model was trained learning that a mistake between a class 0
and a class 1 is less severe, than a mistake between classes
0 and 2. Analyzing Table 6, results on classes 0 and 2 are

similar for both models. The model with grid search even
achieved slightly better results than model using hyperpa-
rameters tuned with Bayesian optimization for class 0. The
most noteworthy difference is found watching class 1 re-
sults. In fact, accuracy on class 1 with B0 outperforms grid
search method by almost 10 points. With the second model
using BO, individuals from class 1 are less confused with
either class 0 and class 2.

6 Conclusion
Being able to quickly find the hyperparameter sets giving
the best results on the data is a real issue since it gives an
indication on the need to spend more time on finding the
best model or working differently on data. In this work
two methods to select neural network hyperparameters are
compared. Our results confirmed what can be found in lit-
erature, Bayesian optimization outperforms grid search to
find the best hyperparameter set.
Indeed, based on the chosen criterion, AUC, both model
respectively reaches 0.817 for the grid search and 0.856 for
Bayesian optimization hyperparameter set, representing an
improvement of 5%. Computing accuracy for each classes
and watching for the global accuracy, it appears that the
model tuned with Bayesian optimization surpasses model
tuned with grid search on every criterion (see Table 6).

6

Grid search Bayesian optimization
AUC 0.817 0.856

Accuracy for class 0 68.3% 66.8%
Accuracy for class 1 67.6% 77.3%
Accuracy for class 2 64.3% 67.3 %

Accuracy 67.5% 72.3%

Table 6 – Performance comparison between models tuned
with grid search or Bayesian optimization

Because each evaluation is time consuming, we limited our
trials to around 100 attempts for each technique, as a con-
sequence grid search was restricted to only three hyper-
parameters. This number can be increased working with
Bayesian optimization, we take advantage of it introducing
a fourth hyperparameter to tune (i.e. the number of neu-
rons in each hidden layer). Furthermore, using Bayesian
optimization also allowed us to stretch the hyperparame-
ter range of search. For instance, regularization parameters
are restricted to [10−1 10−9] for the grid search while us-
ing Bayesian optimization, it is possible to try element in
range [10−1 10−15]. Using Bayesian optimization leads to
find better hyperparameter sets using less iterations. In a
further step, a work will be done to increase the data set
with new features and rearrange the existing features.

References
[1] J. Bergstra, D. Yamins, and D. D. Cox. Making a sci-

ence of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures. 2013.

[2] E. Brochu, V. M. Cora, and N. De Freitas. A tutorial
on bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchi-
cal reinforcement learning. CoRR, abs/1012.2599, 12
2010.

[3] J. de la Torre Gallart, D. Puig, and A. Valls. Weighted
kappa loss function for multi-class classification of or-
dinal data in deep learning. Pattern Recognition Let-
ters, 05 2017.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on im-
agenet classification. IEEE International Conference
on Computer Vision (ICCV 2015), 1502, 02 2015.

[5] P. I. Frazier. A tutorial on bayesian optimization. 07
2018.

[6] C. E. Rasmussen and C. K. I. Williams. Gaussian Pro-
cesses for Machine Learning (Adaptive Computation
and Machine Learning). The MIT Press, 2005.

[7] J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algorithms.
Advances in Neural Information Processing Systems,
4, 06 2012.

7

