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Résumé
Nous proposons un algorithme d’autocalibrage de camé-
ras robuste et globalement optimal, fondé sur l’estimation
de la "Absolute Quadratic Complex" (AQC). Dans ce tra-
vail, nous considérons un ensemble de caméras perspec-
tives à paramètres intrinsèques variables mais avec des
rapports d’aspect connus et une absence d’asymétries (ou
inclinaison) des axes, des hypothèses très raisonnables
avec les caméras récentes. Le problème d’estimation est
alors formulé sous la forme d’un problème de minimisation
impliquant des polynômes rationnels. Ce problème est ré-
solu ici via la stratégie "Branch-and-Prune" (BnP) et une
programmation semi-définie. L’objectif atteint par l’AQC
estimée est assuré de se situer dans une tolérance défi-
nie par l’utilisateur (ou un critère d’optimalité) par rap-
port à l’objectif fourni par la solution globalement opti-
male. Notre algorithme est déterministe et présente une
complexité de mémoire constante. De plus, les résultats des
expériences menées avec des données simulées et réelles
révèlent que l’algorithme est numériquement très stable
et robuste face à des niveaux importants de bruit dans
les images. Plus important encore, contrairement à toute
autre méthode d’autocalibrage, lorsque des images avec
des données aberrantes sont présentes, notre méthode four-
nit encore de bons résultats.

Mots Clef
Vision et géométrie, Auto-étalonnage, Optimisation.

Abstract
We propose a robust and globally optimal camera autoca-
libration algorithm based on the so-called Absolute Qua-
dratic Complex (AQC) formulation of the problem. Our
working assumption is that of a set of perspective came-
ras, with varying intrinsic parameters, some exhibiting no
skew and known aspect ratio (inliers) and some not (out-
liers). The problem of estimating the AQC is formulated
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as a median-residual minimization problem involving ra-
tional polynomials. This problem is solved via a Branch-
and-Prune strategy and semidefinite programming. The ob-
jective reached by the estimated AQC is guaranteed to be
within a user-defined tolerance (or optimality criterion)
from the objective provided by the globally optimal solu-
tion. Our algorithm is deterministic and exhibits a constant
memory complexity. Furthermore, the results of the exten-
sive experiments conducted with simulated and real data
reveal that the algorithm is numerically very stable and
robust against significant levels of image noise. Most im-
portantly, unlike any other autocalibration method, when
outlier images are present, our method yields equally good
results.
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1 Introduction
The problem of recovering the metric structure of an unk-
nown scene from images captured by an uncalibrated ca-
mera has abundantly been addressed in the literature. The
problem has long stumbled upon the challenging task of re-
trieving the camera’s intrinsic parameters from image fea-
ture correspondences, i.e. camera autocalibration.
Existing camera autocalibration methods assume the
images are captured by cameras sharing some com-
mon internal geometric properties implying either fully
constant [10, 16, 25, 21, 5, 4, 2, 7, 8] or partially va-
riable [11, 22, 17, 3, 23, 26, 6] intrinsic parameters. Such
assumption is particularly viable when the images are cap-
tured by the same moving camera. In such case, the came-
ra’s internal geometry can be kept entirely unchanged by
simply refraining from focusing and zooming. When the
camera is allowed to change focus and zoom, pixel’s as-
pect ratio and the image’s skew factor, on which a priori
information may be available, have been shown to remain
stable. In general, autocalibration is carried out by fitting,
via (preferably) a geometrically meaningful objective [17],
the internal geometry of the camera associated with each
image to that of a natural perspective camera model, i.e.



a camera with square pixels (no skew and unit aspect ra-
tio) and an image-centered principal point. Note that ca-
meras with rectangular pixels, i.e. no skew and non-unit
aspect ratio, can easily be reduced to unit aspect provided
the aspect ratio is known. In the absence of prior know-
ledge about the aspect ratio, the natural perspective camera
model is widely employed. As it turns out, using the natural
perspective camera model works very well in practice as it
faithfully describes a large number of consumer cameras.

However, when collecting images of the same scene from
different "unknown" sources (e.g. images from the web),
the natural camera model assumption may not be valid for
all images in the set at hand. This may be the case either
because the imaging camera is at fault, as it does not satisfy
the assumptions of a natural camera, or because the image
itself has been altered through, most commonly, resizing
or cropping. For instance, the principal point’s position is
altered in the case of asymmetrically cropped images [13]
(Figure 6.b) and an uneven resizing affects the aspect ra-
tio (Fig. 6.c). Autocalibration generally revolves around
using the so-called Absolute Conic (AC) as a surrogate ca-
libration object. The AC is a virtual conic on the plane at
infinity whose image (IAC) and dual image (DIAC) hap-
pen to convey the viewing camera’s intrinsic parameters.
Constraints, such as partial or full constancy of the came-
ra’s parameters are translated into constraints on either the
IAC or DIAC. For instance, the DIAC in each view was
shown to emanate from a subset of planes on the so-called
Dual Absolute Quadric (DAQ) [25, 10] : a special degene-
rate quadric of planes tangent to the AC. Nearly a decade
later, it was in turn shown that the IAC in each view resul-
ted from lines on the so-called Absolute Quadratic Com-
plex (AQC) [23], also referred to as the Absolute Line Qua-
dric [26] : a degenerate quadric formed by all lines intersec-
ting the AC. Estimating either the DAQ or AQC allows one
to retrieve the sought after camera parameters along with
its supporting plane which they encode. Together, the plane
at infinity and the camera parameters are ultimately used to
lift the projective reconstruction up to a metric frame. Au-
tocalibration via the estimation of either the DAQ or AQC
is a challenging nonlinear problem.

However, assuming the camera has zero-skew, the princi-
pal point coordinates are decoupled on the IAC whereas
DIAC, there exists coupled terms. Adding known aspect
ratio assumption, the focal lengths are stand-alone entities
on the IAC whereas DIAC, conjugating principal point co-
ordinates. Hence, these constraints can be enforced more
efficiently on the IAC rather than DIAC. Despite that, esti-
mating the DAQ has received significantly more attention
in the literature than that of estimating the AQC. Those are
the motivations for us to exploit the IAC-related AQC for-
mulation to solve the problem in hand.

More recent methods take account of the global opti-
mality of the solution, that is, the convergence towards
the correct solution is guaranteed to a certain degree.
In [5], Fusiello et allet@tokeneonedotdeveloped a me-

thod with epipolar geometry constraints under a Branch-
and-Bound (BnB) interval minimization, the minimiza-
tion is conducted by interval analysis where the pro-
gress takes lengthened time to converge. In [2], Boc-
quillon et allet@tokeneonedotproposed a BnB method
based on DAQ but limited to the estimation of so-
lely focal length as the only unknown intrinsic parame-
ter. Differ to the aforementioned methods, Chandraker et
allet@tokeneonedot([3]) considered the varying intrinsic
parameters case, the method presented the constraints on
DAQ as non-convex polynomials solved by a hierarchy of
convex LMI (Linear Matrix Inequality) relaxations (Las-
serre ,[14]) which relies on a pre-defined relaxation order.
In theory, the method can reach global optimality when re-
laxation order is adequate, though in practice, such a re-
laxation order can not be determined a priori and setting a
high relaxation order leads the optimization to be more li-
kely numerically untraceable. Lastly, the method relies on
a good scaling (normalization) of the polynomials.
In this paper, we address the autocalibration problem for
a set of cameras where outliers on intrinsic characteris-
tics may present. Based on the known aspect ratio and
no-skew hypotheses, We devised a method which mini-
mizes the median-residual of the rational polynomials from
AQC formulation. The solution is certified up to an user-
defined optimality criterion by bounded Sum-of-Square
(SoS) convexity test and converge through BnP paradigm.
Moreover, with polytopical polynomial presentation of the
bounded problem, we minimized the bound on intrinsic pa-
rameters sequentially simultaneously with SoS convexity
test.
The proposed method is compared to the State-of-the-
Art globally optimal method in [3]. The proposed method
yields competitive results with significantly better perfor-
mance in high level of image noises and/or with ouitliers
in the data.
Firstly, we define the necessary notations and lay down the
background of the AQC formulation. We then introduce
our proposed method in the following section. The experi-
mental results are analyzed next and finally, we summarize
the conclusion.

2 Background
In this paper, we consider a scene embedded in a projective
3-space and observed by n cameras whose respective in-
trinsic parameters are encapsulated in upper-triangular ma-
trices Ki of the form

K =

 τf γ u
0 f v
0 0 1

 (1)

where f , τ , γ, and (u, v) respectively denote the focal
length, skew factor, aspect ratio, and principal point’s pixel
location of the considered camera. A scene point Xj is re-
presented by a homogeneous 4-vector Xj . Its projection yij
on an arbitrary image i is represented by its homogeneous



coordinates yij ∼ MiXj , where Mi is a 3 × 4 projection
matrix. Similarly, a line Lk in the scene is represented by
its Plücker coordinate 6-vector Lk and projects onto image
i onto a line ljk with coordinates

lik ∼ PiLk, i = 1 . . . n (2)

where each Pi is a 3× 6 line-projection matrix. If X1 and
X2 are two distinct points, then the line L joining them
projects onto the line MiX1 ∧MiX2 joining their pixel
projections in image i. Line MiX1 ∧MiX2 can hence be
factored into PiL. Given Mi ∼ [ M̃i |mi ], where M̃i is
a 3× 3 matrix and mi a 3-vector, and for some appropriate
choice of L, Pi can be given by

Pi ∼ [ det(M̃i)M̃i−T | − [ mi ]∧M̃
i ], i = 1 . . . n. (3)

The Absolute Quadratic Complex [23], also referred to as
the Absolute Line Quadric [26], is a set of lines intersecting
the Absolute Conic. The AQC, represented by a 6× 6 rank
3 positive semi-definite matrix Ω, and the image of the AC
on each image i, represented by a 3 × 3 positive definite
matrix ωi ∼ Ki−TKi−1, are related by

PiΩPiT ∼ ωi. (4)

Assuming the world reference frame is arbitrarily attached
to a camera with ω as image of AC, Ω factors as

Ω ∼
[

I
[ n ]

T

∧

]
ω
[

I [ n ]∧
]

(5)

where I is the 3 × 3 identity matrix and the 3-vector n is
such that (nT 1)T represents the coordinates of the plane at
infinity. Note that if Ω is retrieved, n and K (the intrinsic
parameters matrix of the reference camera) can be extrac-
ted and the projective scene and cameras can be upgraded
to a metric frame [9].
The AQC formulation (4) is particularly well suited for au-
tocalibration when the cameras exhibit no skew and unit
aspect ration. For instance, the image of AC of a camera
with γ = 0 and τ = 1 is of the simplified form

ω =

 1 0 −u
0 1 −v
−u −v β

 (6)

where β = f2 + u2 + v2. Denoting by ωik` the entry at the
kth row and `th column of PiΩPiT, the skew and aspect
ratio assumptions yield the following constraints

ωi11 − ωi22 = 0 and ωi12 = 0, i = 1 . . . n. (7)

The entries of Ω may be obtained through a linear least-
squares solution using (7) along with the trace property
trace(Ω) = 0 from at least 10 images. Additionally, when
an image-centered principal point is considered, a proper
shifting of the image’s origin to the image center yields
two additional constraints on Ω :

ωi13 = 0 and ωi23 = 0, i = 1 . . . n. (8)

In such case, the number of required images for a linear
estimate of Ω drops to 6. In all cases, the rank of Ω
may be enforced a posteriori. However, the positive semi-
defniteness of Ω is not guaranteed. After an estimate of Ω
is obtained linearly, n and the intrinsic parameters of the
reference camera can be refined through nonlinear least-
squares.

3 Robust autocalibration
In the camera autocalibration problem we address, we as-
sume that half or more of the cameras, including the refe-
rence one, satisfy the pinhole camera model with no skew
and unit aspect ratio. It is customary to seek the solution
that, in addition to the skew and aspect ratio constraints,
also minimizes the distance of the principal point to the
image center. Up to half the cameras could violate such
assumptions, whether on the skew, the aspect ratio or on
the principal point. Such cameras would be referred to as
outliers.
Assuming each image’s reference frame is at its center,
each camera would provide, for any given n and ω, the
vector of residuals

ri = [
ωi11 − ωi22

ωi11

ωi12
ωi33

ωi13
ωi11

ωi23
ωi22

]. (9)

A robust method for solving such problem with outliers
is by minimizing the Least-Median-Squares (LMS) resi-
duals :

δ∗ = min
n∈Bn,ωBω

median
i=1...n

||ri||2∞

s.t. ω � 0
(10)

where ||.||∞ is the infinity norm. The sets Bω and Bn res-
pectively denote the bounding boxes defined by [β, β] ×
[u, u]×[v, v] ⊂ R3 and [n1, n1]×[n2, n2]×[n3, n3] ⊂ R3.
ni, ni denote the lower and upper bound of i-th entry of n
respectively, and ni ≤ ni. Note that each entry of the vec-
tor of residuals is a rational polynomial of the form

fi(x)

gi(x)
(11)

where x = (ω,n). Since the polynomials are cubic in
(ω,n), δ∗ is optimized through a non-linear optimization
and not guaranteed in anyways, an optimal solution.

3.1 Globally ε-optimal and pruning prin-
ciple

First, for a δ∗ (β∗x ⊂ βx) to be a better solution compa-
ring to all the solutions in an arbitrary bound sub to the
initial bound (β′x ⊂ βx), the following conditions must be
satisfied : for 50% of the images, there must exist one poly-
nomial per image has the costs of all its possible solutions
higher in absolute value comparing to δ∗, that is, depen-
ding on the sign of the polynomial, bigger or smaller than
δ∗ or −δ∗ respectively, such a polynomial inequality can



be formulated as :

ς
fi(x)

gi(x)
> δ∗, ς ∈ {−1,+1} → ci(x) > 0, (12)

the problem then can be generalized as :
n∑
j=1

Ej(x) ≥ j

2
, ∀x ∈ β′x, i = 1 . . . 8

Ej(x) = 1 ⇐⇒ ∃ ci(x) > 0,

Ej(x) = 0 ⇐⇒ @ ci(x) > 0.

(13)

If true, β′x can never reach δ∗, thus, pruned ; If false, in the
BnP paradigm, β′x is branched into two child nodes where
the biggest interval among all variables in n is split at the
mean.
Note that if ∀β′x ⊂ βx, Eq.(13) is satisfied, meaning, all
nodes can be pruned by δ∗, then naturally, δ∗ is the globally
optimal solution.
Moreover, for Eq.(12) to be true for all β′x, eventually, β′x
has to be infinitely small. Therefore, to converge in finite
time in practice, a user-defined optimality criterion (ε) is
added :

ς
fi(x)

gi(x)
+ ε > δ∗ (14)

Hence, δ∗ is globally ε-optimal.

3.2 Branch-and-Prune
To summarize the BnP paradigm :

1. Initialize βx and initialize δ∗ with βx’s solution
(Eq.(11)), add βx into the BnP queue ;

2. Take the first node in the queue, i.e, β′x. Process it with
Eq.(13). If pruned, skip to Step.4 ;

3. If branched, estimate δ′ with Eq.(11) in the child
nodes, if δ′ < δ∗, we update δ∗ = δ′, add the nodes
to the back of the queue.

4. Return to step 2 or stop if the queue is empty and δ∗

is the globally ε-optimal solution.
Note that in a convectional BnP paradigm, pruning is done
by comparing optimistic and pessimistic costs whereas in
our case, we only have one cost, pruning is done as descri-
bed in previous section.

3.3 Linearization via Gram matrix
As summarized in Eq.(12), pruning is depending on deter-
mining the positiveness of a polynomial in a given bound.
Relating ci(x) > 0 to any rational polynomials described
in Eq.(9), one can find that ci(x) is quadratic in n and
(ω,n) is cubic. The problem is NP-hard and to test its
positiveness, (ω,n) must be decoupled and linearized, at
the same time, subject to the bound on x.
To do so, let us first assume ω is fixed at a vertex, for ins-
tance, ω1 = ω(β 7→ β, u 7→ u, v 7→ v). One may add a
SoS underestimator term :

c1(ω1,n)−
3∑
j=1

α1j(nj − nj)(nj − nj) ≥ 0,

s.t. α1j ≥ 0, α1 ∈ {α1j}, j = 1 . . . 3,

(15)

then convert such a quadratic polynomial into its Gram ma-
trix formulation G(ω1,α1) (or simplified to G1) as fol-
lows :

[n 1]TG(ω1,α1)[n 1] ≥ 0. (16)

By checking the PSD of G1 : G1 � 0 is equivalent to
proving the positiveness of Eq.(15), note that the bound
of n has been embedded in G1 as parameters. For more
details regarding Gram matrix, [19] can be referred to.

3.4 Polytopic polynomials and bound opti-
mization

Following the previous section, we are able to verify the
positiveness of a rational polynomial ci(ωi,n) at an arbi-
trary vertex ωi in the given n bound, by checking the fea-
sibility of its equivalent LMI problem :Gi � 0. This is one
step apart to the goal : verify the positiveness of ci(x) > 0
which is bounded not only by n, but also ω. For that, ac-
cording to the polytope theory ([20]), one can verify the
positiveness of a set of polytopic polynomials representing
the vertices of the bound. In our case, a set of LMIs repre-
senting the vertices of ω :

{Gi � 0}Ni=1 . (17)

N is the number of vertices. In this case, N = 8, which
is the amount of the combinations of the lower and upper
ω bound. Further, we can also define the polytope G of the
polynomial, again, through its Gram matrices :

G =

{
G =

N∑
i=1

θiGi,

N∑
i=1

θi = 1, θi ≥ 0

}
(18)

Note that θi only affects ωi terms in Gi. This is to show
that G can represent all values in bound by the linear com-
binations of the vertices. This means that if one of the entry
of ω is subtitled as a variable, it can be minimize linearly.
This property is used to minimize the bound on ω. For ins-
tance, to minimize the bound on β, at the same time, verify
the positiveness of concerning polynomial :

min
β,θi,αi

β, i = 1 . . . N,

s.t. G(β) � 0,∑N
i=1 θi = 1, θi ≥ 0.

(19)

N = 4 since β is a variable and (u, v) are at their ver-
tices. It is obvious to maximize the β bound similarly to
(19) and adopt it to update (u, v) bounds. Note that if the
PSD of G(β) is not satisfied while optimizing the bounds,
the polynomial ci(x) is pruned. Therefore, the bound mi-
nimization is done at Step.2 in Section 3.2 simultaneously
with pruning.

4 Experiments
We have tested the proposed method in synthetic simula-
tions and with real image datasets. Our method is com-
pared to the State-of-Art method from Chandraker et



FIGURE 1 – Image samples from datasets (top) and their 3D reconstructions with outlier images (bottom). Left to right :
‘Fountain’, ‘Herz-jesu’, ‘Florence’, ‘Notre dame’.
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FIGURE 2 – Results from setups of 10 images and varying noise level (pixel noise)

allet@tokeneonedot[3]. The two methods are further refer-
red to as ‘AQC BnP’ and ‘DAQ Relax’ respectively.
In all experiments, the image points are normalized be-
forehand. The projective scene reconstruction (recove-
ring point projection matrices Mi) is then retrieved using
[18] and further refined by Bundle Adjustment (from
Vincent SfM toolbox [24]). The implementation and ex-
periments are carried out with MATLAB 2017a. The LMI
constraints are implemented with Yalmip [15] parser and
solved by MOSEK [1]. The hardware specifications are In-
tel i7@2.80GHz CPU and 16GB RAM. For DAQ Relax,
the degree of polynomial relaxation is set to 2 as sugges-
ted in the original paper [3]. For AQC BnP, the optima-
lity criterion ε is set to 5e−2. The local non-linear optimi-
zation is implemented with the Matlab function so-called
‘fminisearchcon’ where the non-linear non-smooth pro-
blem is solved by a simplex method ([12]) and non-linear
constraints are converted to penalty functions and added to
the optimization. Reader may refer to Matlab documenta-
tion for more details.
The results are compared in 3 quantified measures : the
normalized Root-Mean-Square (RMS) error of 3D point
reconstruction (∆3D), the normalized intrinsic parameters
RMS error (∆f and ∆uv) and the computing time. The 3D
point are normalized to a unit sphere and ∆3D the RMS

error of the euclidean distance from result points to corres-
ponding ground truth points. Other RMS errors represent
the normalized error from result to the ground truth value.

4.1 Simulations
All synthetic images are in size 512 × 512 pixels. The
camera parameters are : f = 800, u = 256, v =
256, τ = 1, γ = 0 unless noticed otherwise. The
image sequences are generated with various lengths (n ∈
{10, 12, 14, 16, 18}), and zero-mean Gaussian pixel noise
(σ) is added to image point coordinates in 7 levels, the stan-
dard deviations are : σ ∈ {0, 0.5, 1, 1.5, 2, 2.5, 3}. AQC
BnP is initialized with the bounds as u, v ∈ {0, 512}
which represents the full image plane disparity, and f ∈
{0, 5120}. A combination of n and σ makes one experi-
mental setup. The RMS error per setup is calculated from
100 samples. For an arbitrary sample, the data is generated
as follows : A set of 500 3D feature points is generated with
normal distribution. 2D image points are acquired from 3D
points projection with random motions.
Fixed number of images : In Figure 2, the RMS errors
(∆3D,∆f,∆uv) increase as σ increases. As observed, the
quality of 3D reconstruction is more correlated to the qua-
lity of f estimation rather than to (u, v) as the ∆3D follows
closely to ∆f proportionally. Therefore, although DAQ
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FIGURE 3 – Results from setups of 1.5 pixels of noise and varying number of images
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FIGURE 4 – Results from setups with 10 images, 1.5 pixels of noise and varied numbers of inliers where τ = 1.1.

Relax has better principal point estimation, AQC BnP has
a better reconstruction (∆3D) throughout. Moreover, the
errors increased linearly for AQC BnP whereas for DAQ
Relax, the increment is significantly larger at σ = 3, this
indicates the advantage of AQC BnP in terms of robustness
against high-level image noises.
Fixed pixel noise level : In Figure 3, the RMS errors de-
crease as n increases. This is expected as the more images,
the more information/constraints added to the cost. The
difference between two methods is decreasing while n in-
creases, this indicates a better minimal-view performance
on AQC Relax.
With outliers : Since AQC BnP is solving a median-
residual optimization problem, inherently, the method is
robust to so-called ‘outlier’ images, where the assumed
constraints on intrinsics (τ, γ) varies, meaning the unit-
aspect ratio and/or zero-skew condition has been violated.
For example, in Fig. 4, the outliers, instead of unit-aspect
ratio (τ = 1), tau = 1.1. It is obvious the impact of outliers
on the result for DAQ Relax whereas AQC BnP remain in-
variant to outliers and yields good performance throughout.
Note with 90% inliners, or 1 outlier in the set, DAQ Re-
lax’s reconstruction improved significantly, compromising
the principal point (P.p) estimation. On the other hand, if
the aspect ratio is increased to τ = 1.25 for the same se-
tup, as shown in Table 1, DAQ Relax is unable to cope
further with the outlier where AQC Relax is effected as
well on certain samples, but it still gives high percentage
of quality reconstructions among all samples. This shows
the high sensitivity of DAQ Relax while AQC BnP shows
its robustness on know-aspect ratio violation in the outliers.

The impacts on (u, v, γ) violations are not as significant as
on f against both methods, although it is worth mentioning
that AQC BnP has a bit better performance (Tab. 1).

Setup Method ∆3D ∆f ∆uv

τ = 1.25 AQC 0.0799 0.0266 2.41e−2

DAQ 0.572 1.228 1.06e−2

P.p = AQC 4.4e−3 9.1e−3 1.35e−2

1.6 (uo, vo) DAQ 6.8e−3 52.2e−3 2.19e−2

Skew = 85◦
AQC 4.3e−3 9.6e−3 1.01e−2

DAQ 4.9e−3 12.5e−3 0.52e−2

TABLE 1 – Results from setups with 10 images with one
outlier image, 1.5 pixels of noise. The outlier varies depen-
ding on the setup as shown in the table.

Time analysis : Regarding computing time (Figure 5), as
the complexity of DAQ Relax is invariant to n, computing
time stays invariant to varying σ and n. DAQ Relax gives a
fast finishing time throughout. AQC BnP gives a faster per-
formance on lower noise level (Fig. 5.a) and stays variance
of n (Fig. 5.b). The computing time increases as the error of
the outlier value increases or the number of outlier images
increases (Fig. 5.c) with an exception on 90% inliers case.
The reason can be the same as the effect on DAQ Relax in
Fig. 4. AQC BnP is dealing the ambiguity between iden-
tifying the outlier, excluding the image from median cost
and a deviated P.p estimation which may improve the cost
as well.
To summarize, the simulation shows that our method has
the robustness advantage when outlier images are present
in the data. Despite a bigger error on principle point esti-
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FIGURE 5 – Computing time analysis : a : the setup in Fig. 2 ; b : the setup in Fig. 3 ; c : the setup in Fig. 4.

(a) (b) (c)

FIGURE 6 – An example of outlier images. a : Original
image ; b : After (τ = 1.1) being stretched or resized ; c :
After asymmetrical cropping, shifting (u, v). Image is from
the ‘fountain’ dataset.

mation, the 3D reconstruction performance is superior with
and without outliers in comparison to DAQ Relax.

4.2 Real images
The methods are tested on 2 well-known multi-view data-
sets (the ‘Fountain’ (11 images) and ‘Herz-jesu’ (8 images)
sequence), also, on two datasets created with images taken
by a phone camera on the scene at ‘Notre dame’ in Stras-
bourg (18 images) and in ‘Florence’. The image samples
from these datasets are shown in Fig.1. To represent the
possible outliers commonly seen on the web, (τ, u, v) are
varied, the examples are shown in Fig.6.
The results and its ground truth are shown in Table 2. On
‘Notre dame’ and ‘Florence’, One may refer the quality
of the solution to results in Setup 1 (No outliers). The re-
sults follows the analysis of the simulations. The AQC BnP
yields a good performance in spite of the various outlier
setups. On ‘Fountain’, large τ outlier leads to DAQ Relax
failure (Setup 2) whereas shifting (u, v) (Setup 3) did little
effects. On ‘Herz-jesu’, DAQ Relax results in large errors
(Setup 2 and 3) where τ outliers present. On ‘Notre dame’,
as τ and number of outlier images increases from setup 2
to 4, AQC BnP’s results stay close to Setup 1 where the er-
rors grow for DAQ Relax. On ‘Florence’, note that we have
5 images from the dataset, therefore, only 2 images are
considered as inliers for the median-residual optimization
as shown in Eq.(13) which is below the minimal-view case,
hence, a minimal number of residual is fixed to 4 when me-
dian residual falls below, this also shows the flexibility of
AQC Relax. For Setup 2, 2 additional images (7 in total)
found on-line are added in for calibration. We can observe

the impacts of such a least favorable case (minimal-view
sequence, high percentage of outliers with high level devia-
tion on aspect ratio, unknown source of images) on DAQ
Relax in Setup 2 whereas AQC BnP’s result stay invariant.

5 Conclusion
In this paper, we proposed a novel robust globally optimal
autocalibration method that is based on the AQC formula-
tion. The proposed method is robust to geometry changes
(pinhole camera with no skew and unit aspect ratio) across
images. Our method relies on Least-Median-Squares opti-
mization to minimize the deviation from such camera mo-
del. The retained solution is guaranteed to be optimal and
relies on a polytopic formulation of the problem and po-
lynomial SoS theory within a Branch-and-Prune search to
provide such guarantee. In both simulations and real image
experiments, our method has shown not only a very good
performance throughout, but also significant advantages
regarding the robustness against high-level pixel noise as
well as when outlier images were present.



Sequences Setup Method f1 f2 u v Time (s)

Fountain

1 AQC 2785.1 - 1529.1 1023.1 66.3
DAQ 2763.0 2762.9 1535.0 1023.9 1.2

2 AQC 2783.5 - 1530.2 1023.5 707.3
DAQ 1248.7 1251.9 1529.2 1021.3 1.3

3 AQC 2759.1 - 1536.9 1024.1 280.1
DAQ 2750.5 2752.3 1543.1 1026.9 2.0

GT - 2759.5 2764.2 1520.7 1006.8 -

Herz-jesu

1 AQC 2769.3 - 1533.6 1026.3 14.1
DAQ 2776.1 2776.5 1535.8 1025.2 1.1

2 AQC 2768.9 - 1532.8 1029.0 93.7
DAQ 2184.9 2185.1 1524.0 1028.5 2.0

3 AQC 2762.2 - 1533.2 1027.0 245.4
DAQ 551.4 552.0 1528.3 1034.5 1.1

GT - 2759.5 2764.2 1520.7 1006.8 -

Florence
1 AQC 2081.0 - 1039.9 770.6 45.9

DAQ 2122.1 2125.8 1024.3 771.2 1.0

2 AQC 2029.9 - 1022.4 766.4 202.8
DAQ 329.6 353.8 1000.4 800.2 4.1

Notre dame

1 AQC 3012.5 - 2000.0 1125.0 64.4
DAQ 2985.7 2966.9 2002.5 1125.6 1.5

2 AQC 2922.9 - 2027.4 1152.4 956.4
DAQ 2883.5 2811.7 1992.2 1111.2 1.6

3 AQC 2896.6 - 2038.9 1160.3 532.6
DAQ 2547.5 2445.5 1940.9 1071.9 1.5

4 AQC 2887.3 - 2007.7 1132.7 245.4
DAQ 2451.7 2383.3 1889.4 1049.0 1.1

TABLE 2 – Results from real image datasets, compared to grand truth (GTlet@tokeneonedot) with various outlier setups.
‘Fountain’ (11 images) : Setup 1 : no outlier images ; Setup 2 : 2 outlier images with τ = 1.25 ; Setup 3 : 1 outlier image with
shifted (u, v) as shown in Fig. 6.c.
‘Herz-jesu’ (8 images) : Setup 1 : no outlier images ; Setup 2 : 1 outlier image with τ = 1.1 ; Setup 3 : 2 outlier images with
τ = 1.1 and τ = 1/1.1 respectively.
‘Florence’ : Setup 1 : no outlier images (5 images) ; Setup 2 : 3 outlier images with τ = 1.25.
‘Notre dame’ (18 images) : Setup 1 : no outlier images ; Setup 2 : 5 outlier images with τ = 1.1 ; Setup 3 : 5 outlier images
with τ = 1.2 ; Setup 4 : 7 outlier images with τ = 1.2.
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