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Résumé

Ces dernieres années, les réseaux de neurones profond sont
devenus indispensables pour le développement d’applica-
tions intelligentes. Ils ont atteint des performances remar-
quables, devenant plus complexes et cumulant des millions
de parametres. Ainsi, faire fonctionner ce type de modeéle
sur des appareils disposant de ressources limitées comme
des téléphones mobiles n’est pas une tdche triviale. Cet
article a pour but de présenter des méthodes permettant
le portage de ces modeéles sur plateformes mobiles. Nous
nous focalisons sur des techniques de compression permet-
tant de diminuer la consommation des modeéles de maniere
globale (en taille, en mémoire, ou en temps de calcul par
exemple).

Mots Clef

Apprentissage profond, compression, plateformes mobiles

Abstract

Over the past, deep neural networks have proved to be an
essential element for developing intelligent solutions. They
have achieved remarkable performances at a cost of dee-
per layers and millions of parameters. Therefore utilizing
these networks on limited resource platforms such as mo-
bile phones is a challenging task. This paper presents a
survey of methods suitable for porting these models to mo-
bile devices. We are mainly focusing on compression tech-
niques which decrease the overall resource requirements
(e.g. size, memory, computation time).
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1 Introduction

Since the advent of deep neural network architectures and
their massively parallelized implementations [37, 39], deep
learning based methods have achieved state-of-the-art per-
formance in many applications such as face recognition,

semantic segmentation, object detection, etc. In order to
achieve these performances, a high computation capability
is needed as these models have usually millions of para-
meters. Moreover, the implementation of these methods
on resource-limited devices is difficult due to memory
consumption and size constraints. For example, AlexNet
[37], is over 200MB and all the milestone models that fol-
lowed such as VGG [54], GoogleNet [59] and ResNet [28]
performed well however are not necessary time or memory
efficient. Thus finding solutions to implement deep models
on resource-limited platforms is essential. For instance,
smartphones have a limited memory and each device has
a different computational capacity. Therefore, to run these
applications on embedded devices the deep models need to
be less-parametrized in size and time efficient.

Few works have been done focusing on dedicated hard-
ware or FPGA with a fixed specific architecture. Having
a specific hardware is helpful to optimize a given applica-
tion. However, it is difficult to generalise. The CPU archi-
tectures of the smartphones are different from each other.
Thus, it is important to develop generic methods to help
optimize neural networks. This paper aims to describe ge-
neral compression methods for deep models that can be im-
plemented on a large range of hardware architectures, espe-
cially on various generic-purpose CPU architectures. These
compression techniques are reducing the size and computa-
tion requirements of a model by using different algorithms.
We classify these methods in several parts and describe
them briefly. Firstly, knowledge distillation methods are
explained to tackle the problem of transfer learning (Sec-
tion 2.1). Followed are the hashing (Section 2.2), pruning
(Section 2.3) and quantization (Section 2.4) methods which
explore the redundancy of a network. Numerical precision
(Section 2.5) and binarization (Section 2.6) are mentioned
by introducing the use of data with lower precision. In each
of these parts is presented existing methods, their strengths,
weaknesses and in which context they may be applied.
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FIGURE 1 — Accuracy of different deep neural networks, shallow neural networks and shallow mimic neural networks against
their number of parameters on TIMIT speech database Dev (left) and Test (right) sets. Results and figures are from [5].

2 Compression techniques

2.1 Knowledge distillation

To design a neural network, it is important to evaluate how
deep the network needs to be. A neural network is compo-
sed of an input, an output and intermediate layers. A shal-
low neural network is a network with a lower number of
intermediate layers as opposed to a deep neural network.
A deeper network has more parameters and can potentially
learn more complex functions e.g. hierarchical representa-
tions [16]. The theoretical work from [16] revealed the dif-
ficulty involved to train a shallow neural network with the
same accuracy as a deep network. However, an attempt was
made to train a shallow network on SIFT features in order
to classify the Imagenet dataset [37]. The authors conclu-
ded that it was a challenging task to train highly accurate
shallow models [16].

In spite of that, Ba et al. [5] reported that neural networks
with a shallower architecture are able to learn the same
function as deep networks, with a better accuracy and so-
metimes with a similar number of parameters (see Figure
1). Inspired from [7], their model compression consists in
training a compact model to approximate, to mimic, the
function learned by a complex model. The preliminary step
is to train a deep network (the teacher network) to gene-
rate automatically labelled data by sending unlabelled data
through this deep network. Next, this "synthetic" dataset
is then used to train a smaller mimic model (the student
network), which assimilates the function that was learned
by the larger model. It is expected that the mimic mo-
del should produce same predictions and mistakes as the
deep network. Thus, similar accuracy can be achieved bet-
ween an ensemble of neural networks and its mimic mo-
del with 1000 times fewer parameters. In [5], the authors
demonstrated this assertion on the CIFAR-10 dataset. An
ensemble of deep Convolutional Neural Network (CNN)
models was used to label some unlabeled data of the data-
set. Next, the new data were used to train a shallow model
with a single convolution and maxpooling layer followed

by a fully connected layer with 30k non-linear units. In the
end, the shallow model and the ensemble of CNN acqui-
red the same level of accuracy. Further improvements have
been made on student-teacher techniques, especially with
the work of Hinton et al. [29]. Their framework utilizes the
output from the teacher’s network to penalize the student
network. Additionally it is also capable of retrieving an en-
semble of teacher networks to compress their knowledge
into a student network of similar depth.

In recent years, other compression methods that are des-
cribed in this paper are preferred. However, some works
are coupling transfer learning techniques with their own
methods to achieve strong improvements. For example,
the works of Chen et al. [10] and Huang et al. [34] fol-
low this approach employing additional pruning techniques
(see section 2.3). The former uses a deep metric learning
model, whereas the latter handles the student-teacher pro-
blem as a distribution matching problem by trying to match
neuron selectivity patterns between them to increase the
performance. These methods are efficient. However their
performances can vary largely according to the applica-
tion. Classification tasks are easy to learn for a shallow
model, but tasks like segmentation or tracking are difficult
to apprehend even with a deep model. Thus, distilling this
knowledge is also a difficult mission.

2.2 Hashing

Hashing is employed to regroup data in a neural network to
avoid redundancy and access the data faster. Through em-
pirical studies, hashing methods have proven themselves to
be an effective strategy for dimensionality reduction [61].
HashedNets [9] is a hashing methods utilized and develo-
ped by Nvidia. In this model, a hash function is used to
uniformly and randomly group network connections into
hash buckets. As a result, every connection that is in the ith
hash bucket has the same weight value w;. This technique
is especially efficient on fully connected feed forward neu-
ral networks. Moreover, It can also be used in conjunction
with other neural network compression methods.
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FIGURE 2 — Comparison of the speed of AlexNet and VGG before and after pruning on CPU, GPU and TK1. Figure from

[25].

Several other hashing methods have been developed in the
past few years. Spring et al. [55] proposed an approach
where adaptive dropout [6] (i.e. choosing nodes with a pro-
bability proportional to some monotonic functions of their
activations) and hash tables based on locality-sensitive ha-
shing (LSH) [20, 52, 58, 33] are utilized. These techniques
once combined allowed the authors to construct a smart
structure for maximum inner product search [53]. This
technique exhibits better results, reducing computational
costs for both training and testing. Furthermore, this kind
of structure leads to sparse gradient updates and thus a mas-
sively asynchronous model. Thereby, models can be easily
parallelized as the data dispersion could be wider. Howe-
ver, wider data dispersion can result in a slow down of the
model. A trade-off between these criteria is necessary.

2.3 Pruning

The compression of neural networks by using pruning tech-
niques has been widely studied. These techniques enable
to remove parameters of a network that are not necessary
for a good inference. The early work in this domain was
aiming to reduce the complexity and the over-fitting in net-
works [15, 27]. In these papers, the authors used pruning
techniques based on the Hessian of the loss function to re-
duce the number of connections inside the network. The
method finds a set of parameters whose deletion would
cause the least increase of the objective function by measu-
ring the saliency of these parameters. The authors use nu-
merous approximations to find these parameters. For ins-
tance, the objective function is approximated by a Tay-
lor series. Finding parameters whose deletion does not in-
crease this function is a difficult problem that involves, for
example, the computation of huge matrices as well as se-
cond derivatives. Also, these methods suggest that reducing
the number of weights by using the Hessian of the loss
function is more accurate than magnitude-based pruning
like weight decay. Additionnally, it reduces the network
over-fitting and complexity. However, the second-order de-
rivatives introduce some computational overhead.

Signorini et al. [26] utilized an intuitive and efficient me-
thod to remove parameters. The first step is to learn the

connectivity of the network via a conventional training of
the network i.e. to learn which parameters (or connections)
are more important than the other. The next step consists in
pruning those connections with weights below a threshold
i.e. converting a dense network into a sparse one. Further,
the important step of this method is to retrain (fine-tune)
the network to learn the weights of the remaining sparse
connections. If the pruned network is not retrained, then
the resulting accuracy is considerably lower.

Anwar et al. [4] used a similar method. However, they state
that pruning has the drawback of constructing a network
that has "irregular" connections, which is inefficient for
parallel computing. To avoid this problem, the authors in-
troduced a structured sparsity at different scales for CNN.
Thus, pruning is performed at : the feature map, the ker-
nel and the intra-kernel levels. The idea is to force some
weights to zero but also to use sparsity at well defined ac-
tivation locations in the network. The technique consists
in constraining each outgoing convolution connection for
a source feature map to have similar stride and offset.
This results in a significant reduction of both feature and
kernel matrices. Usually, sparsity has been studied in nu-
merous works in order to penalize non-essential parame-
ters [62, 66, 3, 38].

Similar pruning approach is seen in Molchanov et al. [48].
However different pruning criteria and technical conside-
rations are defined to remove features maps and kernel
weights, e.g. the minimum weight criteria [26]. They as-
sume that if an activation value (an output feature map) is
small, then the feature detector is not important in the ap-
plication. Another criteria involves the mutual information
which measures how much information is present in a va-
riable about another one. Further, the Taylor expansion is
used similar to LeCun [15], to minimise the computational
cost between the pruned and the non-pruned network. In
this case, pruning is treated as an optimization problem.

A recent pruning method [41] consists in removing filters
that are proven to have a small impact on the final accuracy
of the network. This results in automatically removing the
filter’s corresponding feature map and related kernels in the
next layer. The relative importance of a filter in each layer



is measured by calculating the sum of its absolute weights,
which gives an expectation of the magnitude of the output
feature map. At each iteration, the filters with the smallest
values are pruned. Recently, Jian-Hao et al. [45] developed
a pruning network called ThiNet which, instead of using
information of the current layer to prune unimportant fil-
ters of that layer, uses information and statistics of the sub-
sequent layer to prune filters from a given layer. Not only
weights and filters but also channels can be pruned [44]
using complex thresholding methods.

Numerous pruning methods exist and each of them has
strength and weaknesses. The main disadvantage of these
methods is that it takes a long time to prune networks due
to the constant retraining that they demand. Recent tech-
niques like [42] try to bypass some steps by pruning neu-
ral networks during their training by using recurrent neural
networks. However, all of them result in considerable re-
duction of parameters. Pruning methods allow to eliminate
10 to 30 percent of the network’s weights. Regardless of the
method, the size of a network can be decreased with pru-
ning without change or significant drop in accuracy. The
inference with the resulting models will also be faster (see
Figure 2) but the actual speed depends on which method
has been utilized and the sparsity of the network after pru-
ning.

2.4 Quantization

Network quantization is similar to pruning as this is a com-
mon technique in the deep learning community. It aims
to reduce the number of bits required to represent every
weight. In other words, it decreases the number of para-
meters by exploiting redundancy. Quantization reduces the
storage size with minimal loss in performance. In a neu-
ral network, it means that parameters will be stacked into
clusters. As a result, the parameters in the same cluster will
share the same value.

Gong et al. [22] performed a study on a series of vec-
tor quantization methods and found that performing scalar
quantization on parameter values using a simple k-means
is sufficient to compress them 8 to 16 times without a huge
loss in accuracy. Few years later, Han et al. [25] utilized a
trivial quantization method using k-means clustering. They
performed a pruning step before and a Huffman coding step
after the quantization in order to perform a larger compres-
sion of the network. In their experiments, the authors were
able to reduce network storage by 35 to 49 times across
different networks. Pruning and quantization are methods
that are often used together to achieve a solid compression
rate. For example, for a LeNet5-like network [40], pruning
and quantization compressed the model 32 times and with
huffman coding even 40 times.

It is possible to apply several quantization methods on neu-
ral networks. Choi Y. et al. [11] defined a Hessian-weighted
distortion measure as an objective function in order to de-
crease the quantization loss locally. Further, a Hessian-
weighted k-means clustering is used for quantization pur-

poses to minimize the performance loss. Recent neural net-
work optimizers can provide alternatives to the Hessian and
thus reduce the overall computation cost, like Adam [36],
AdaGrad [18], Adadelta [64] or RMSProp [30]. However
one of the advantages of using the Hessian-weighted me-
thod is that the parameters of all layers in a neural network
can be quantized together at once compared to the layer-
by-layer quantization used previously [25, 22].
Quantization techniques are efficient as they achieve an im-
pressive compression rate and can be coupled with other
methods to compress the models further. Their efficiency is
integrated in some frameworks and tools to directly quan-
tify a network and port it on mobile devices [1, 2].

2.5 Reducing numerical precision

Although the number of weights can be considerably re-
duced using pruning or quantization methods, the overall
number of parameters and costly matrix multiplications
might still be enormous. A solution is to reduce the com-
putational complexity by limiting the numerical precision
of the data. Deep neural networks are usually trained using
32-bit floating-point precision for parameters and activa-
tions. The aim is to decrease the number of bits used (16, 8
or even less) and to change from floating-point to a fixed-
point representation. Selecting the precision of data has al-
ways been a fundamental choice when it comes to embed-
ded systems. When committed to a specific system, the mo-
dels and algorithms can be optimized for the specific com-
puting and memory architecture of the device [19, 21, 60].
However, applying quantization for deep neural networks
is a challenging task. Quantization errors might be propa-
gated and amplified throughout the model and thus have a
large impact on the overall performance. Since the begin-
ning of the 90’s, experiments have been made in order to
limit the precision of the data in a neural network, espe-
cially during backpropagation. Iwata et al. [35] created a
backpropagation algorithm with 24-bit floating-point pro-
cessing units. Hammerstrom [24] presented an architecture
for on-chip learning using 8-16 bits fixed-point arithme-
tic. Furthermore, Holt and Hwang [31] showed empirically
that only 8-16 bits are enough for backpropagation lear-
ning. Nonetheless, even if all these works are helping to un-
derstand the impact of limited numerical precision on neu-
ral networks, they are done on rather small models such as
multilayers perceptron with only a single hidden layer and
very few units. More sophisticated algorithms are required
for more complex deep models.

In 2015, Gupta et al. [23] trained deep CNN using 16-
bit fixed-point instead of 32-bit floating-point precision.
It constrained neural networks parameters such as bias,
weights and other variables used during the backpropa-
gation such as activations, backpropagated error, weight
updates and bias updates. Different experimentations have
been made with this 16-bit fixed-point word length, e.g. va-
rying the number of bits that encode the fractional (integer)
part between 8 (8), 10 (6) and 14 (2), respectively. In other



terms, the number of integer bits I L added to the number
of fractional bit F'L is always equal to 16. Tested on the
MNIST and CIFAR-10 datasets with a fully connected and
a convolutional network, the results were nearly the same
as the floating-point baseline when decreasing the fractio-
nal part to 12-bit precision.

The crucial part in this method is the conversion of a floa-
ting point number (or higher precision format) into a lower
precision representation. To achieve this, [23] describe two
rounding schemes. The first one is the round-to-nearest me-
thod. It consists of defining || as the largest integer mul-
tiple of € = 27 'L less than or equal to x. So given a num-
ber = and the target representation (IL,FL), the rounding is
done as follows :

lz] ifle] <@ <|z]+
(1)
lz] +eifx] +

IA

% x<|z]+e.

The second rounding scheme is stochastic rounding. It is
a statistic and unbiased rounding where the probability of
2 to be rounded to |z] is proportional to its proximity to
|x] :

A L2}

€
s — 2] )

|| + € w.p. -

]  w.p.

Courbariaux et al. [12] investigated the impact of numeri-
cal precision, especially to reduce the computational cost
of multiplications. Their experiments were performed with
three formats : floating point, fixed point [23] and dyna-
mic fixed point [63] (which is a compromise of the first
two). Instead of having a single scaling factor with a fixed
number for the integer part and another fixed number for
the fractional part, several scaling factors are shared bet-
ween grouped variables and are updated from time to time.
The authors achieved similar conclusions as [23] : a low
precision is sufficient to run and train a deep neural net-
work. However, limited precision can be efficient when it
is paired and optimized with a specific hardware. Gupta et
al. [23] achieved good results when they paired the fixed
point format with FPGA-based hardware but the hardware
optimization of dynamic fixed point representations is not
as simple. Neural networks with limited-precision parame-
ters and their optimized integration on hardware have al-
ready been studied in the past. For example, Mamalet et
al. [47] and Roux et al. [51] developed optimized CNNs
to detect faces and facial features in videos on embedded
platforms in real-time. They used a fixed-point parameter
representation but also optimized the inference algorithms
for specific platforms. This allowed them to exploit parallel
computing and memory locality.

To conclude, a limited numerical precision is sufficient to
train deep models. It is helpful to save memory storage and
computation time, even more if a dedicated hardware is
used. However, not every step can be done with low pre-

cision in a neural network. For instance, a higher precision
must be used to update the parameters during training.

2.6 Binarization

In recent works, limited numerical precision was extended
to binary operations. In a binary network, the weights and
the activations at least are constrained to either +1 or —1.
Following the same idea as previously with limited nume-
rical precision [12], the same authors decided to apply two
rounding schemes to binarize a variable : deterministic and
stochastic rounding [14]. The most common rounding me-
thod is to maintain the sign of the variable. So for a variable
x, its binary value z* will be the sign of z (+1if z > 0, —1
otherwise). The second binarization scheme is a stochas-
tic rounding. Thus 2 = +1 with probability p = o(x)
and 2 = —1 with probability 1 — p where o is the hard
sigmoid function [14]. The stochastic method is difficult
to implement as it requires randomly generating bits from
the hardware. As a result, the deterministic method is com-
monly used. However, recent works like [43] are focusing
on alternative methods to approximate the weight values in
order to obtain a more accurate network.

Nevertheless, just like limited numerical precision, a hi-
gher precision is required at some point and real-valued
weights are required during the backpropagation phase.
Adding noise to weights and activations is beneficial to ge-
neralization when the gradient of the parameters are com-
puted (as with dropout [56, 57]). Binarization can also be
seen as a regularization method [14].

With all these observations, Courbariaux et al. [13] deve-
loped a method called BinaryConnect to train deep neural
networks using binary weights during the forward and ba-
ckward propagation, while storing the true precision of the
weights in order to compute the gradients. Firstly the for-
ward propagation : layer-by-layer, the weights are binari-
zed and the computation of the neuron’s activation is faster
because multiplications are becoming additions. Secondly
the backward propagation : the training objective’s gradient
is computed in function of each layer’s activation (from the
top layer and going down layer-by-layer until the first hid-
den layer). Lastly the parameter update : the parameters
are updated using their previous values and their computed
gradients. During this final step more precision is needed.

As a consequence the real values are used (the weights are
binarized only during the first two steps). Tests on datasets
like MNIST, CIFAR-10 and SVNH can achieve state-of-
the-art results with two-thirds less multiplications, training
time accelerated by a factor of 3 and a memory requirement
decreased by at least 16.

In a binary weight network, only weight values are approxi-
mated with binary values. This also works on CNNs where
the models are significantly smaller (up to 32 times). Then,
the operation of convolution can be simplified as follows :

I«W =~ ({I®B)a, 3

where, [ is the input, W the real-value weight filter, B



Technique

Method

Pros

Cons

Small models with comparable perfor-

Models can only be trained from scratch;
Difficult for the tasks other than classifica-
tion.

Better parallelization; Better data dis-
persion ; Less computation time.

Considerably slower if the model is too
sparse.

Knowledge  Using a deep CNN to train a
distillation smaller CNN. mances.
Hashing Indexing neurons into a hash

table.
Pruning Deleting neurons that have mi-

nor influence on the perfor-

Significant speed up and size reduction;
Compression rate is 10x to 15x (up to

Pruning process is time consuming; Less
interesting for too sparse model.

mance. 30x).

Quantization Reducing the number of dis-
tinct neurons by gathering them
into clusters.

High compression rate :
Can be coupled with pruning.

10x to 15x; Considerably slower if the model is too

sparse.

Numerical Decreasing the numerical preci-  High compression rate and speed up. Higher precision is needed during the para-

Precision sion of the neurons. meters update ; Could require specific hard-
wares.

Binarization Decreasing the numerical preci-  Very high compression rate (30x) and  Higher precision is needed during the para-

sion of the data to 2 bits.

speed up (50x to 60x).

meters update.

TABLE 1 — Summary of different compression methods.

the binary filter (sign(W)), « a scaling factor such that
W =~ aB and @ indicates a convolution without multi-
plications. Further improvements have been done with the
XNOR-Net proposed by Rastegari et al. [5S0] where both
the weights and the input to the convolutional and fully
connected layers are binarized. In this case, all the ope-
rands of the convolutions are binary, and thus the convo-
lution can be performed by only XNOR and bitcounting
operations :

I« W = (sign(I) & sign(W)) © Ka., “4)

where, [ is the input, W is the real-value weight filter and
K is composed of the scaling factors for all sub-tensors in
the input /.

The resulting network in [50] is as accurate as a single-
precision network. It also runs faster (58 times on GPU)
and is smaller (AlexNet is reduced to 7MB). Many existing
models (like the hourglass model [49]) have been enhan-
ced with the XNOR-Net method to achieve state-of-the-art
results [8]. Recently, the XNOR-Net method has been stu-
died to be transformed from a binarization task to a terna-
rization task [17]. Values are constrained in a ternary space
-1, 0, +1. It allows to remove the need for full-precision va-
lues during the training by using a discretization method.

2.7 Discussion

In Table 1, we summarized and compared various deep-
learning model compression methods from the literature
discussed in this paper. These methods aim to reduce the
size, computation time or the memory employed by deep
models. However, there is no golden rule for which me-
thods works best. Pruning and quantization can be utilized
to achieve impressive performances on trained models. Ho-
wever, a sparse model may not always be computationally

efficient. In this case, binarization or reducing the numeri-
cal precision method can be one of the solutions. The speed
gained for limiting the numerical precision is important, es-
pecially if the structure is well designed. Nevertheless, hi-
gher precision is needed in some steps and accuracy could
vary significantly. In the end, compressing a deep model
will always lead to a trade-off between accuracy and com-
putational efficiency.

3 Conclusion

Computation efficiency remains a constraint for deep lear-
ning algorithms. There are no universal methods to opti-
mize a deep model because every model is specific and
is designed for a peculiar application. Further work needs
to be done in this direction to leverage all of their po-
wer on mobile devices. Algorithmic optimisations like [46]
and recent works such as Mobilenet[32] and Shufflenet[65]
have shown that it is promising to not only compress mo-
dels but also to construct them intelligently. Thus a well-
designed architecture is the first key to optimized net-
works. Works like Neural Architecture Search, which aims
to construct and search the best architectural design of net-
work topology, is the next step towards optimized models.
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