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{Yifei.Zhang}@u-bourgogne.fr

Keywords: Semantic Segmentation, Multimodal Fusion, Deep Learning, Road Scenes

Abstract: Deep neural networks have been frequently used for semantic scene understanding in recent years. Effective
and robust segmentation in outdoor scene is prerequisite for safe autonomous navigation of autonomous ve-
hicles. In this paper, our aim is to find the best exploitation of different imaging modalities for road scene
segmentation, as opposed to using a single RGB modality. We explore deep learning-based early and later
fusion pattern for semantic segmentation, and propose a new multi-level feature fusion network. Given a pair
of aligned multimodal images, the network can achieve faster convergence and incorporate more contextual
information. In particular, we introduce the first-of-its-kind dataset, which contains aligned raw RGB images
and polarimetric images, followed by manually labeled ground truth. The use of polarization cameras is a sen-
sory augmentation that can significantly enhance the capabilities of image understanding, for the detection of
highly reflective areas such as glasses and water. Experimental results suggest that our proposed multimodal
fusion network outperforms unimodal networks and two typical fusion architectures.

1 INTRODUCTION

Semantic segmentation is one of the main challenges
in computer vision. Along with the appearance
and development of Deep Convolutional Neural Net-
work (DCNN) (Krizhevsky et al., 2012), the trained
model can predict which class each pixel in the in-
put images belongs to. By learning from massive
data sets of diverse samples, this method achieves a
good performance on end-to-end image recognition.
Robust and accurate scene parsing of outdoor envi-
ronments paves the way towards autonomous naviga-
tion and relationship inference. Compared with in-
door scenes, off-road perception is more challenging
due to dynamic and complex situations. The outdoor
environment may easily change in different time slots
with light or color variations. Even in structured envi-
ronments, for instance on urban roads, there are still
several challenges such as the detection of glass and
muddy puddles.

Most existing datasets and methods for outdoor
scene semantic segmentation are mainly based on
RGB camera. They are only well acceptable in gen-
eral conditions excluding complex environment and
small amount of samples. To develop additional prac-
tical solutions, one of the main challenges is data fu-
sion from multi-modalities. Therefore, considering
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Figure 1: Multimodal images in POLABOT dataset.

the RGB modality as a kind of imperfect sensor, we
attempt to fuse the complementary feature informa-
tion of the same scene from other modalities. Actu-
ally, several modalities are ubiquitous in robotic sys-
tems, such as RGB-D, LIDAR, near infrared sensor,
etc. Figure 1 shows the multimodal images of our
POLABOT dataset.

In this work, we use a polarimetric camera, as
a complementary modality, to provide a richer de-
scription of a scene. Polarization of light radiation
has more general physical characteristic than inten-



sity and color (Wolff, 1997). We can figure out that
windows of a building, the asphalt road, and the pud-
dle of water have reflected polarizations (Walraven,
1977). Plenty of research have demonstrated that the
use of polarization camera can significantly enhance
the capabilities of scene understanding, especially for
reflective areas (Harchanko and Chenault, 2005).

Over the past few years, a variety of deep learning-
based end-to-end approaches have been proposed.
One factor that increased the popularity of deep learn-
ing is the availability of massive data. In the case
without large amount of samples, we attempt to ac-
quire more features of the same scene using several
modalities. To some degree, an effective encoding of
complementary information enables learning without
the need for massive data, therefore the use of small-
scale dataset can also lead to good performances. Re-
cent works have shown promising results in extract-
ing and fusing features from complementary modali-
ties at pixel-level. The idea is to separately or jointly
train the model using data from different sensors and
integrate them into a composite feature at early or late
stage.

In this paper, we firstly review the existing fu-
sion methods and datasets in section 2. Next, in sec-
tion 3, we explore the two typical early and late fusion
architectures, and propose our multi-stage Complex
Modality network (CMnet), which has an encoder-
decoder pattern and takes advantage of the state-of-art
segmentation network. We evaluate the performances
of the different fusion schemes using two different
datasets in section 4. In particular, we introduce a
new dataset, which to the best of our knowledge is
the first multimodal dataset containing polarimetric
images. Finally, the paper ends with concluding re-
marks in section 5.

2 RELATED WORK

In this section, we go through some of semantic seg-
mentation methods, more details can be found in the
review of (Garcia-Garcia et al., 2017). Then we sum-
marize existing deep learning-based fusion schemes
and various outdoor scene multimodal datasets.
Deep Neural Network Before deep learning
achieved its current tremendous success, traditional
computer vision methods were widely used, these
methods are base on classifiers which operates
on fixed-size feature inputs and a sliding-window.
From the beginning with FCN (Long et al., 2015),
the end-to-end fully convolutional network has
become one of the most popular models for image
segmentation. Recent years have witnessed a series

of new encoder-decoder architectures along this line,
including SegNet (Badrinarayanan et al., 2017),
and U-Net (Ronneberger et al., 2015). Followed
by the dilated convolutions proposed in (Yu and
Koltun, 2015). Based on this technology, the series of
DeepLab (Chen et al., 2014; Chen et al., 2018a; Chen
et al., 2018b) achieves the state of the art performance
in semantic segmentation.
Multimodal Fusion Architecture Benefiting from
the improvement of unimodal neural network, excel-
lent progress has been made on multimodal fusion
architecture. Several common spectral sensors, such
as RGB-D and near-infrared sensor, were applied to
pixel-level data fusion of the same scene. For ex-
ample, FuseNet (Hazirbas et al., 2016) and multi-
view neural network (Ma et al., 2017) were proposed
to incorporate complementary depth information into
RGB segmentation framework. These fusion net-
works are based on an early fusion architecture, the
feature maps from depth are constantly fused into the
RGB branch in the encoder part.

Besides, a late fusion based model, Long Short-
Term Memorized Context Fusion, also called LSTM-
CF, was proposed by (Li et al., 2016). This network
extracts multimodal features from depth and photo-
metric data sources separately, then concatenates the
feature map at three different scales. Another simple
late fusion network (Eitel et al., 2015) was proposed
for robust RGB-D object recognition. Furthermore,
a convoluted mixture of deep experts technique (Val-
ada et al., 2016a) was used in the late fusion architec-
ture. These early and late fusion architectures were
studied and applied to various scenarios and fields,
for instance, forested environments navigation (Val-
ada et al., 2016b), urban driving assistance (Jaritz
et al., 2018).
Datasets Along with the development of com-
puter vision techniques, a series of high-quality
outdoor scene datasets have appeared, such as
CamVid (Brostow et al., 2008b; Brostow et al.,
2008a), Cityscapes (Cordts et al., 2016), etc. They
are widely used in outdoor semantic scene under-
standing. In addition, some research institutes pub-
lish their scenario-based multimodal dataset. For
instance, KAIST dataset (Hwang et al., 2015) is a
multi-spectral pedestrian dataset of real traffic scenes,
which was collected by a co-aligned RGB/Thermal
camera, RGB stereo, 3D LiDAR and inertial sen-
sors. Especially for semantic segmentation, there is
KITTI dataset (Geiger et al., 2013) which contains
high-resolution RGB data, grayscale stereo cameras
data, and 3D point cloud; Freiburg Multi-spectral
Forest dataset (Valada et al., 2016b) is also a multi-
spectral dataset for forested environment semantic
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Figure 2: Early fusion and Late fusion architectures comparison.

segmentation, it contains RGB, Depth, NIR, Near-
Infrared, Red, Green (NRG), Enhanced Vegetation In-
dex (EVI), and Normalized Difference Vegetation In-
dex (NDVI) images. However, none of these datasets
contains polarimetric data.

3 MULTIMODAL FUSION

In this section, we describe the fusion architectures
for multi-modalities and the training procedure in de-
tails. In essence, the process of training is to mini-
mize the error while regularizing the parameters. Let
S = {(Xn,yn)|n = 1,2, ...,N} be a set of N training
examples, where Xn is the feature vector of n-th ex-
ample extracted from different modalities, and yn ∈
{1,2, ...,c} is the corresponding segmentation class.
Then the training problem can be framed as an opti-
mization one, which can be formulated as:

θ
∗ = argmin

θ

1
N

N

∑
i=1

L(yn, f (xn;θ)), (1)

where the loss is computed as L(u,y) =−∑k ykloguk.
Then we can use, for example, gradient descent algo-
rithm to find local minimum.

3.1 Fusion architectures

In this part, we describe two typical fusion strategies,
namely early fusion and late fusion. The two simple
structures, as well as their extensions, are widely used
for deep learning-based fusion. Here we use SegNet
as baseline network to construct such architectures.
SegNet has a classical Encoder-Decoder structure fol-
lowed by a Softmax classifier. The encoder is a regu-
lar convolutional neural network which contains five
layers. Each layer extracts local features, normalizes
the data distribution, obtains sparse representations by
means of convolution, batch normalization and ReLU
accordingly. Afterwards, pooling is used for down-
sampling the feature map and propagate spacial in-
variant features. Correspondingly, the decoder un-
samples the shrunk feature map and recover the lost
spatial information to full-sized segmentation.

3.1.1 Early fusion

As shown in Figure 2(a), the early fusion architec-
ture has a unitary neural network, fusion takes place
before passing into the encoder. Assume that both
inputs (for example one RGB image and one polari-
metric image) have size 3×H×W, then fused frame
will be 6×H×W. So we also call this sort of fusion
architecture as channel fusion.

This fusion architecture, combining features be-
fore training, seems simple and light. However, it is
also more likely to over-fit. To see why, let consider
the model’s complexity. Let H be a family of func-
tions taking values in {−1,+1} with VC-dimensions
dvc (Vapnik, 1998). Then, for any δ> 0 and all h∈H,
the VC-dimension bound (Mohri et al., 2012) can be
derived with a high probability:

Eout(h)≤ Ein(h)+

√
8
N

ln(
4(2N)dvc

δ
), (2)

where Eout denotes out-of-sample error, Ein denotes
in-sample error, and N denotes the data points that the
hypothesis space can shatter the set. As the amount
of input’s dimensions increases, so does the VC-
dimensions. Then the model complexity Ω(N,H,δ)
rises along with the increase of VC-dimensions. As
a result, larger data samples should be fed to fit the
deep neural model for less in-sample error. In other
words, in the case that samples are not huge enough,
the model may be easier to over-fit.

3.1.2 Late fusion

Figure 2(b) shows the late fusion architecture which
was used in this paper. It has two separated branches
of network, with each branch trained to extract fea-
tures from a special modality. Fusion takes place after
a series of downsampling. Assuming that the two fea-
ture maps have size 1×H×W, after concatenation, the
resulting feature will be 2×H×W. Then a 1×1 convo-
lution is applied to reduce the number of channels.

This approach has the advantages that each net-
work computes weights separately while encoding.
Compared with early fusion, to some extent, it may



Figure 3: Our proposed fusion architecture: CMnet for mul-
timodal fusion based on late fusion architecture.

reduce the difficulty of model fitting and yield a bet-
ter outcomes. Furthermore, thanks to the scalability
and flexibility of this architecture, the model can be
designed in accordance with requirements and easily
extend to multi-inputs without a large dimension in-
crease.

3.2 Proposed fusion model

We propose a new approach for multimodal data fu-
sion, Complex Modality Neural Network (CMnet),
based on late fusion architecture since it has afore-
mentioned merits.

Let S = {(Xn,yn)|n= 1,2, ...,N} denotes the train-
ing set, and Xn = {xa,xb} is the training example,
where xa and xb are the vector of input images from
modality a and b, respectively. Also let M1, and M2,
denote the map between the input and output of the
first, and second branch of the encoder-decoder net-
work, respectively. Then the output of the fusion
module can be written as:

ŷn = f (Xn) = softmax[W ∗ (M1(xa)+M2(xb))], (3)

where, W is a series of convolution kernels for upsam-
pling. The softmax function is introduced to represent
the categorical distribution, and is defined as:

softmax(z) j =
ez j

∑
K
k=1 ezk

, (4)

where z = [z1, . . . ,zK ]
T .

Figure 3 presents the whole architecture of CM-
net. It has an Encoder-Decoder structure and two sep-
arated branches. The encoder is used for mapping raw
inputs to feature representations. The decoder inte-
grates three feature maps, then recovers the feature
representation to final segmentation results. That is a
reliable method to extract different modality features
and recover sharp object boundaries for end-to-end
segmentation.

On the one hand, the branch for RGB modality
incorporates a SegNet-like encoder. By copying the

indices from max-pooling, it can capture and store
boundary information in the encoder feature maps be-
fore sub-sampling. We keep this strength to make the
network more memory efficient and improve bound-
ary delineation. On the other hand, we focus on the
feature quality of the extra modality. Other modalities
can provide rich complementary information on low
level appearance features.

However, how to captures rich contextual infor-
mation from extra modality is a challenging task.
We refer to the state-of-the-art segmentation network
Deeplab v3+ (Chen et al., 2018b), which uses a new
pooling method named ASPP (Atrous Spatial Pyra-
mid Pooling) to incorporate the multi-scale contextual
information. We apply this network structure as the
other branch’s encoder for the complementary modal-
ity. The first upsampling stage is subsequently applied
to each branch to recover the feature representation to
the same fusion size, then we fuse these three feature
maps, which contains high-level and low-level multi-
modal features information simultaneously. The sec-
ond upsampling stage and softmax are applied to the
fused feature map, which produces the final results.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the different fusion mod-
els, and report a series of results on two datasets. One
is the publicly available Freiburg multispectral forest
dataset (Valada et al., 2016b), and the second one is a
new multimodal dataset containing polarimetric and
RGB data, called POLABOT dataset. In this work,
all the networks are implemented based on Pytorch
framework with a Nvidia Titan Xp graphics process-
ing unit (GPU) acceleration. The input data was ran-
domly shuffled after each epoch. We initialize the
learning rate as 0.0001 and use the contraction seg-
ments of pre-trained VGG-16 model and ResNet-101
as encoders. Then we fine-tuned the weights of the
decoders until convergence.

4.1 POLABOT dataset

As shown in Figure 4, we collected multimodal im-
ages using a mobile robot platform equipped with
four cameras: the RGB camera (IDS Ucam), a polari-
metric camera (PolarCam), a depth camera (Kinect
2.0), and a near-infrared camera. Our raw dataset con-
tains over 700 multi-modalities images. All the im-
ages were acquired, synchronized and calibrated us-
ing the Robot Operating System (ROS) framework.
Our benchmark also contains 175 images with pixel
level ground truth annotations which were generated



Figure 4: Mobile robot platform used for the acquisition of
the POLABOT dataset. It is equipped with the IDS Ucam,
PolarCam, Kinect 2 and a NIR camera.

manually. These images have been dispatched into
8 classes: unlabeled, sky, water, windows, road, car,
buildings and others. Benefiting from the use of a po-
larimetric camera, our mobile robot platform is more
capable of discerning on windows, water and other
reflective areas. That allows us to do much more ex-
ploratory research on polarimetric images in seman-
tic scene understanding domain. In this paper, we
use aligned RGB and polarimetric images as inputs
to train the fusion models.

For integrating the acquired images, we apply
an automatic homographic method to image align-
ment (Moisan et al., 2012). This method allows to
transform the RGB images with respect to the polari-
metric images, and crop to the intersecting regions
of interest. Moreover, as deep learning models need
large data sets of diverse examples, a certain amount
of data should be guaranteed. For this reason, we em-
ploy geometric data augmentations to increase the ef-
fective number of training samples, including rotation
and flipping. Data augmentation and multimodal data
fusion help to train deep neural networks on small
scale datasets.

4.2 Experimental evaluation

4.2.1 Freiburg Multispectral Forest dataset

We train the segmentation architectures on the pub-
lic Freiburg Forest dataset first. This dataset was col-
lected by a modified RGB dashcam with NIR-cut fil-
ter in outdoor forested environment. It consists of
over 15,000 raw images, and 325 images with pixel
level ground truth annotations for 6 classes, which are
the sky, trail, grass, vegetation, obstacle and others. In
this unstructured forest environment, Enhanced Veg-
etation Index(EVI) was proposed to improve sensitiv-
ity to high biomass regions and vegetation monitor-

Table 1: Performance of segmentation models on Freiburg
Multispectral Forest dataset. EF, LF refer to early fu-
sion and late fusion respectively. We report pixel accu-
racy (PA), mean accuracy (MA), mean intersection over
union (MIoU), frequency weighted IoU (FWIoU) as met-
ric to evaluate the performance.

PA MA MIoU FWIoU
RGB 92.07 89.56 79.87 86.19
EVI 92.05 88.76 79.66 85.82
EF 91.80 88.02 78.95 85.67
LF 92.26 89.52 80.36 86.34
CMnet 93.02 90.06 81.64 87.68

Table 2: Comparison of deep unimodal and multimodal fu-
sion approaches by class. We report MIoU as metric to eval-
uate the performance.

Road Grass Veg/Tree Sky
RGB 77.18 73.47 89.78 80.66
EVI 81.55 73.50 88.08 76.39
EF 80.78 74.07 86.90 78.68
LF 82.27 75.66 88.54 77.68
CMnet 81.01 76.55 90.64 83.25

ing. It shows stronger capacities on feature represen-
tation than NIR in the previous work. To extract more
accurate information, here in our case, we select EVI
images as the second modality input besides the visi-
ble input.

We crop the RGB and EVI images as size
3×256×256, and use them as inputs correspond-
ingly. We report several metrics to assess segmen-
tation models: pixel accuracy (PA), mean accuracy
(MA), mean intersection over union (MIoU), fre-
quency weighted IoU (FWIoU). They are frequently
used in semantic segmentation domain.

The results shown in Table 1 show that segmenta-
tion using RGB images yields better results than EVI
images on the whole. This shows that RGB images
provide better high-level features while training. For
fusion architectures, late fusion methods outperform
channel fusion method as we analyzed in the previ-
ous section. Our network yields around 1% ∼ 2%
comprehensive improvements comparing with other
methods.

The results in Table 2 demonstrate the evaluations
by class. We report the main four classes as Road,
Grass, Veg/Tree and Sky. For uni-modality network,
we can find that EVI shows good performance on
Road and Grass classes, and RGB modality has a sig-
nificant advantage on Sky class, which is susceptible
to lighting changes. Moreover, the fusion architec-
ture outperforms uni-modality scheme by integrating
complementary multimodal information. In particu-
lar, our CMnet model achieved a remarkable results



Table 3: Segmentation performance on POLABOT dataset

Input Methods PA MA F1 MIoU
RGB SegNet 87.76 81.44 87.67 64.79
POLA SegNet 90.51 84.15 90.77 68.58
RGB E-Fusion 90.25 85.06 90.64 69.48
+ L-Fusion 90.02 84.28 90.11 68.81
POLA CMnet 90.70 85.90 90.92 72.59

on segmentation comparing with other fusion archi-
tectures, espe.

A note about the results is that Freiburg Forest
dataset was collected from a series of frames, the
scene of these frames are homogenized, the structure
of each class in these images doesn’t fluctuate a lot.
The specialization of certain scenes may also reduce
the demand on the number of samples.

Some segmentation results on the Freiburg dataset
are shown in Figure 5.

4.2.2 POLABOT dataset

In the following part, we report several experimental
results on our POLABOT dataset. The metrics shown
in Table 3 correspond to pixel accuracy (PA), mean
accuracy (MA), F1 score (F1) and mean intersection
over Union (MIoU).

We process the RGB and polarimetric images
with size 3×448×448. While training the networks,
we experimentally found that stochastic gradient de-
scent (batch size=1) doesn’t work well. It is reason-
able that online learning adds too much instability to
the learning process as the weights widely vary with
each batch, especially for small scale dataset with
multi-classes. As a complement of previous analy-
sis of training on small scale dataset, the data aug-
mentation technology applied to POLABOT dataset
gives the additional guarantee for weights learning.
As a result, we can find that polarimetric images in
our dataset provide high quality feature information,
it is a beneficial premise for further data fusion. The
overall best performance in this dataset was obtained
with CMnet integrating RGB and polarimetric inputs,
achieving a mean IoU of 72.59%. It yields around
3% comprehensive improvements comparing with the
second best methods.

Some segmentation results on the POLABOT
dataset are shown in Figure 6.

5 CONCLUSIONS

In this paper, we explored the typical early fu-
sion and late fusion architectures that extract fea-

tures from multi-modalities, and extensively evalu-
ated theirs merits and deficiencies. We also proposed
an extensible multi-level fusion scheme for seman-
tic segmentation, which adopts advanced deep neu-
ral network techniques. It provides design choices
for future research directions. We presented com-
prehensive quantitative evaluations of multimodal fu-
sion on two datasets. The results show the benefits
of fusing multimodal features to achieve state-of-the-
art segmentation performance on small scale datasets.
In addition, we introduced a first-of-a-kind outdoor
scene segmentation dataset for road scene navigation,
which contains high-quality aligned polarimetric im-
ages. We empirically demonstrate that the use of po-
larization camera enhance the capabilities of scene
understanding.

Future work concerns deeper analysis of multi-
modal fusion network, since there is still plenty room
for greater precision. One direction is to add the
weights for each input while integrating. Moreover,
it is possible to optimize the fusion pattern based on
the physical properties of modalities and real-world
scenarios.

ACKNOWLEDGEMENTS

This work was supported by the French Agence Na-
tionale de la Recherche(ANR), under grant ANR-15-
CE22-0009 (project VIPeR), as well as a hardware
grant from NVIDIA.



RGB

EVI

GT

SEG-RGB

SEG-EVI

E-FUSION

L-FUSION

CMNET

Figure 5: Two segmented examples from Freiburg Forest
dataset. RGB and/or EVI images were given as inputs.
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Figure 6: Two segmented examples from POLABOT
dataset. RGB and/or POLA images were given as inputs.
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